Abstract
Li metal batteries (LMBs) are crucial for electrifying transportation and aviation. Engineering electrolytes to form desired solid-electrolyte interphase (SEI) is one of the most promising approaches to enable stable long-lasting LMBs. Among the liquid electrolytes explored, fluoroethylene carbonate (FEC) has seen great success in leading to desirable SEI properties for enabling stable cycling of LMBs. Given the many facets to desirable SEI properties, numerous descriptors and mechanisms have been proposed. To build a detailed mechanistic understanding, we analyze varying degrees of fluorination of the same prototype molecule, chosen to be ethylene carbonate (EC) to tease out the interfacial reactivity at the Li metal/electrolyte. Using density functional theory (DFT) calculations, we study the effect of mono-, di-, tri-, and tetra-fluorine substitutions of EC on its reactivity with Li surface facets in the presence and absence of Li salt. We find that the formation of LiF at the early stage of SEI formation, posited as a desirable SEI component, depends on the F-abstraction mechanism rather than the number of fluorine substitution. The best illustrations of this are cis- and trans-difluoro ECs, where F-abstraction is spontaneous with the trans case, while the cis case needs to overcome a nonzero energy barrier. Using a Pearson correlation map, we find that the extent of initial chemical decomposition quantified by the associated reaction free energy is linearly correlated with the charge transferred from the Li surface and the number of covalent-like bonds formed at the surface. The effect of salt and the surface facet have a much weaker role in determining the decompositions at the immediate electrolyte/electrode interfaces. Putting all of this together, we find that tetra-FEC could act as a high-performing SEI modifier as it leads to a more homogeneous, denser LiF-containing SEI. Using this methodology, future investigations will explore -CF3 functionalization and other backbone molecules (linear carbonates).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.