Abstract

Nosocomial pneumonia associated with use of mechanical ventilators is one of the greatest challenges confronted by intensivists worldwide. The literature associates several bacteria with this type of infection; most common in intensive care units are Acinetobacter baumannii, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and some of the Enterobacteriaceae family. To identify the causal agents of nosocomial ventilator-associated pneumonia in patients receiving mechanical ventilation in the intensive care units of Havana's Hermanos Ameijeiras Clinical-Surgical Teaching Hospital in 2011, and to characterize their antibiotic resistance. A cross-sectional descriptive study was conducted using hospital administrative data of quantitative cultures from positive tracheal aspirates for January through December, 2011. Records were analyzed from 77 intensive care unit patients who developed nosocomial ventilator-associated pneumonia. Variables examined were age and sex, and pathogens identified from culture of tracheal aspirate and related antibiotic susceptibility. RESULTS Species most frequently isolated were: Acinetobacter baumannii in 53 patients (68.8%), Pseudomonas aeruginosa in 34 patients (44.2%), other species of Pseudomonas in 15 patients (19.5%), and Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli in 12 patients each (15.6%). Some patients presented more than one pathogen in concurrent or successive infections. Antimicrobial susceptibility testing found high percentages of resistance to antibiotics in all these pathogens. Least resistance was found to colistin. The prevalence of antibiotic resistance in bacteria causing nosocomial ventilator-associated pneumonia is of concern. Colistin is the drug of choice among the antibiotics reviewed, but sensitivity to other antibiotics should be assessed to search for more appropriate broad-spectrum antibiotics for treating nosocomial ventilator-associated pneumonia. Our results also suggest the need to strengthen infection control efforts, particularly in intensive care units, and to reassess compliance with quality control procedures. Multidisciplinary research involving microbiologists, epidemiologists, internists and intensivists is needed to fully understand the etiological and resistance patterns observed.

Highlights

  • Nosocomial pneumonia associated with use of mechanical ventilators is one of the greatest challenges confronted by intensivists worldwide

  • The prevalence of antibiotic resistance in bacteria causing nosocomial ventilator-associated pneumonia is of concern

  • Colistin is the drug of choice among the antibiotics reviewed, but sensitivity to other antibiotics should be assessed to search for more appropriate broad-spectrum antibiotics for treating nosocomial ventilator-associated pneumonia

Read more

Summary

Introduction

Nosocomial pneumonia associated with use of mechanical ventilators is one of the greatest challenges confronted by intensivists worldwide. The literature associates several bacteria with this type of infection; most common in intensive care units are Acinetobacter baumannii, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and some of the Enterobacteriaceae family. Nosocomial infections include infections that happen in hospital and were not present at time of admission, and infections acquired in hospital that become apparent within seven days following hospital discharge.[1] Ventilator-associated pneumonia (VAP) is the second most frequent hospital-acquired infection and one of the most aggressive; it is often associated with higher rates of morbidity and mortality, as well as with increased hospital stays and costs.[2] VAP constitutes 80% of nosocomial pneumonia, occurring in approximately 10% to 20% of patients requiring mechanical ventilation for more than 48 hours,[3] with case fatality between 24% and 76%.[4] While hospitals are not the only settings for mechanical ventilation, in this paper the adjective nosocomial is implicit wherever VAP is mentioned. Most VAP occurs in intensive care units (ICU), where it affects up to 50% of patients;[5] VAP risk in ICU is two to five times higher than in other hospital services.[6,7] The main risk factor is invasive mechanical ventilation,[5] with incidence varying between 10 and 20 episodes per 1000 days of mechanical ventilation (DMV), with risk accumulated at a rate of 1% to 3% per day.[5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call