Abstract
The objective of this study is to use a carbohydrate polymer deacetylated gellan gum (DGG) as matrix to design nanocrystals based intranasal in situ gel (IG) for nose-to -brain delivery of drug. The harmine nanocrystals (HAR-NC) as model drug were prepared by coupling homogenization and spray-drying technology. The HAR-NC was redispersed in the (DGG) solutions and formed the ionic-triggered harmine nanocrystals based in situ gel (HAR-NC-IG). The crystal state of HAR remained unchanged during the homogenization and spray-drying. And the HAR-NC-IG with 0.5% DGG exhibited excellent in situ-gelation ability, water retention property and in vitro release behavior. The bioavailability in brain of intranasal HAR-NC-IG were 25-fold higher than that of oral HAR-NC, which could be attributed to nanosizing effect of HAR-NC and bioadhesive property of DGG triggered by nasal fluid. And the HAR-NC-IG could significantly inhibit the expression of acetylcholinesterase (AchE) and increase the content of acetylcholin (ACh) in brain compared with those of reference formulations (p < 0.01). The DGG based nanocrystals-in situ gel was a promising carrier for nose-to-brain delivery of poorly soluble drug, which could prolong the residence time and improve the bioavailability of poorly soluble drugs in brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.