Abstract

Nosema bombycis (N. bombycis, Nb) is a fungus-related and obligate intracellular parasite that causes chronic pebrine disease in the silkworm. After infecting the host, spores obtain energy from host cells and survive for several days. This symbiosis between the pathogen and the host cell suggests that N. bombycis prevents apoptosis and reactive oxygen species (ROS) production of host cells to create the optimal environmental conditions for its growth and development. In this study, different methods were used to prove that N. bombycis suppressed apoptosis in BmN cells. Flow cytometry analysis results showed that spores suppressed apoptosis of BmN cells at 2 and 5 days after infection (P < 0.05). Compared with actinomycin D (ActD) treatment, apoptosis of BmN cells was apparently reduced after spore infection (P < 0.01). Forty-eight hours after infection, the ROS production of BmN cells was down-regulated compared with that after ActD treatment for 6 h. Furthermore, N. bombycis prevented the formation of apoptosomes by down-regulating the expression of apaf-1 and cytochrome C. In addition, N. bombycis also up-regulated the expression of buffy. Western blot analysis demonstrated that spores decreased the level of host cytochrome C at 48 and 98 h post infection. Thus, our results suggested that N. bombycis inhibited the mitochondrial apoptotic pathway of the host cells to create an optimal environment for its own survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call