Abstract

Gliomas are central nervous system tumors that primarily occur in the brain and arise from glial cells. Gliomas include the most common malignant brain tumor in adults known as grade IV astrocytoma, or glioblastoma (GBM). GBM is a deadly disease for which the most significant advances in treatment offer an improvement in survival of only ∼2 months. To develop novel treatments and improve patient outcomes, we and others have sought to determine the role of molecular signals in gliomas. Recent Advances: One signaling molecule that mediates important biologies in glioma is the free radical nitric oxide (NO). In glioma cells and the tumor microenvironment, NO is produced by three isoforms of nitric oxide synthase (NOS), NOS1, NOS2, and NOS3. NO and NOS affect glioma growth, invasion, angiogenesis, immunosuppression, differentiation state, and therapeutic resistance. These multifaceted effects of NO and NOS on gliomas both in vitro and in vivo suggest the potential of modulating the pathway for antiglioma patient therapies. Antioxid. Redox Signal. 26, 986-999.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.