Abstract

Tree migration to higher latitudes may occur in response to future changes in climate, exposing the trees to higher concentrations of carbon dioxide ([CO2]), new photoperiods, different levels of soil moisture, and other new conditions. These new conditions can influence the physiology, survival, and growth of trees. This study examined the interactive effects of [CO2], photoperiod, and soil moisture on the morphology and resistance to xylem cavitation in trembling aspen (Populus tremuloides Michx.). One-year-old seedlings, in greenhouses, were exposed to two [CO2] (ambient [CO2] 400 μmol·mol−1 or an elevated [CO2] 1000 μmol·mol−1), four photoperiod regimes corresponding to latitudes 48°N (seed origin), 52°N, 55°N, and 58°N, and two levels of soil moisture (60%–75% and 13%–20% of field capacity) for one growing season. Seedling growth, leaf size, specific leaf area, biomass allocation, and xylem resistance to cavitation (water potentials for 20%, 50%, and 80% loss of hydraulic conductivity) were assessed. The seedlings under the longest photoperiod regime (58°N latitude) had greatest height and biomass but smallest specific leaf area. Under the elevated [CO2], however, the longest photoperiod regime significantly reduced xylem resistance to drought-induced cavitation compared with the photoperiod corresponding to 48°N. These results suggest that when migrating to higher latitudes, trembling aspen may grow faster but could become less resistant to drought and more prone to hydraulic failure during a drought spell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call