Abstract

AbstractWe investigate the connection between the equatorial Madden‐Julian Oscillation (MJO) and different types of the Northern Hemisphere mid‐winter major stratospheric sudden warmings (SSWs), i.e., vortex‐displacement and vortex‐split SSWs. The MJO‐SSW relationship for vortex‐split SSWs is stronger than that for vortex‐displacement SSWs, as a result of the stronger and more coherent eastward propagating MJOs before vortex‐split SSWs than those before vortex‐displacement SSWs. Composite analysis indicates that both the intensity and propagation features of MJO may influence the MJO‐related circulation pattern at high latitudes and the type of SSWs. A pronounced Quasi‐Biennial Oscillation (QBO) dependence is found for vortex‐displacement and vortex‐split SSWs, with vortex‐displacement (‐split) SSWs occurring preferentially in easterly (westerly) QBO phases. The lagged composites suggest that the MJO‐related anomalies in the Arctic are very likely initiated when the MJO‐related convection is active over the equatorial Indian Ocean (around the MJO phase 3). Further analysis suggests that the QBO may modulate the MJO‐related wave disturbances via its influence on the upper tropospheric subtropical jet. As a result, the MJO‐related circulation pattern in the Arctic tends to be wave number‐one/wave number‐two ~25–30 days following phase 3 (i.e., approximately phases 7–8, when the MJO‐related convection is active over the western Pacific) during easterly/westerly QBO phases, which resembles the circulation pattern associated with vortex‐displacement/vortex‐split SSWs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call