Abstract

SUMMARY We investigate the variations of the seismic source properties and aftershock activity using kinematic inversions and template-matching for six large magnitude intermediate-depth earthquakes occurred in northern Chile. Results show similar rupture geometry and stress drop values between 7 and 30 MPa. Conversely, aftershock productivity systematically decreases for the deeper events within the slab. Particularly, there is a dramatic decrease in aftershock activity below the 400–450 °C isotherm depth, which separates high- and low-hydrated zones. The events exhibit tensional focal mechanisms at unexpected depths within the slab, suggesting a deepening of the neutral plane, where the extensional regimen reaches the 700–800 °C isotherm depth. We interpret the reduction of aftershocks in the lower part of the extensional regime as the absence of a hydrated-slab at those depths. Our finding highlights the role of the thermal structure and fluids in the subducting plate in controlling the intermediated-depth seismic activity and shed new light in their causative mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call