Abstract

Myeloid differentiation factor 88 (MyD88) is a key adaptor of Toll-like receptors (TLR), an important pattern recognition receptor of the innate immune system. To study the origin and evolution of the vertebrate TLR signaling pathway in innate immune systems, we analyzed the biological characteristics and functions of the MyD88 gene in Northeast Chinese lamprey (Lethenteron morii) using PCR amplification, real-time PCR analysis, dual luciferase reporter gene assay, immunofluorescence assay, and other methods. Bioinformatics analysis showed that LmMyD88 has a modular structure consisting of Toll/IL-1R domain (TIR) and death domain (DD), which is typical of the MyD88 family. A phylogenetic tree showed that the homology of LmMyD88 was consistent with the phylogenetic status of lampreys. Tissue expression analysis indicated that the mRNA expression was expressed in some normal tissues of larval and adult L. morii. Real-time PCR analysis showed that the expression of LmMyD88 in tissues, such as gill and kidney, of the adult increased significantly after infection by Pseudomonas aeruginosa. Subcellular localization results showed that LmMyD88 was expressed in the nucleus, cytoplasm, and other parts. A dual luciferase reporter assay indicated that LmMyD88 activated nuclear factor kappa B downstream of the TLR signaling pathway. This study suggested that LmMyD88 might play an important role in the innate immune signal transduction process of L. morii.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call