Abstract

In the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show, however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift. While we relate these changes to the warming climate, our study is the first to document an in situ squeeze on living space within this system. The warmer isotherms are shifting measurably northwards but cooler isotherms have remained relatively static, stalled by the subpolar fronts in the NW Atlantic. Consequently the two temperatures defining the core of krill distribution (7–13 °C) were 8° of latitude apart 60 years ago but are presently only 4° apart. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’, with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic.

Highlights

  • In the North Atlantic, euphausiids form a major link between primary production and predators including commercially exploited fish

  • The boreal and Arctic waters of the North Atlantic are a major hotspot for northern krill and at the basin scale it is estimated that the total stock biomass may be equivalent to that of Antarctic krill (Euphausia superba), presently estimated at 380 Mt4

  • It is thought that the krill abundance collected by the Continuous Plankton Recorder (CPR) survey mainly reflects the surface indices of the larval and juvenile stages of the three most common euphausiid species in the North Atlantic as well as the adult stages of the smallest species (Thysanoessa longicaudata)

Read more

Summary

Introduction

In the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’, with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic. We relate these spatial and temporal patterns to the warming climate of the North Atlantic and include natural climate variability such as the North Atlantic Oscillation (NAO)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.