Abstract

AbstractIn the beginning of the twenty-first century, weather and climate extremes occurred more and more in extratropical summer, linked to the magnified amplitudes of quasi-stationary waves and external forcing. The study analyzes the relations between multidecadal extratropical extremes in boreal late summer and the North Atlantic (NA; 35°–65°N, 40°W–0°) multidecadal variability (NAMV) in the mid- to high latitudes. The results show that multidecadal extratropical extremes link with the intensified NAMV and the related positive–negative–positive (+ − +) zonal mode of sea surface temperature (SST). 1) The SST mode favors the eastward shift of the negative-phase NA oscillation (NNAO), with a latitudinal pattern of cyclone anomalies over the western European coast and anticyclones over Greenland; NNAO is helpful to baroclinic energy transfer and a longitudinal wavelike pattern. 2) The SST mode and the eddy-driven jet of NNAO are conducive to a southeast extension of the NA jet in close conjunction with the Afro-Asian jet, thereby enhancing the jet waveguide and barotropic energy transfer for the maintenance of a low-frequency wave. 3) The effect of the intensified NAMV on warming Europe contributes to the longitudinal temperature gradient–like “cooling ocean and warming land” pattern, which enhances the meridional wind and wave amplitude of the low-frequency wave. Based on these causes, the intensified NAMV and the + − + SST mode favor the enhancement of the low-frequency wave and quasi-resonant probability, which magnifies the amplitude of the quasi-stationary wave and enhances extratropical extremes on the decadal time scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call