Abstract

AbstractA pronounced regional bathymetric swell is a common feature of oceanic hotspot volcanism. Recently, the hypothesis of a buoyant sublithospheric swell‐root has been favoured, the root being either a ‘refracted plume’ of hot, buoyant and hence low‐viscosity plume material embedded within surrounding higher viscosity asthenosphere, or a ‘restite‐root’ composed of hot and more viscous residues to hotspot melt‐extraction from the hottest central portion of the upwelling plume. In this article, we present numerical experiments that show that these two scenarios predict different flow and melting patterns whenever the plume passes beneath an obliquely oriented fracture zone where the base of the overriding lithosphere changes in thickness. We find that the restite‐root hypothesis predicts an asymmetric spatial pattern of persistent ‘arch volcanism’ strikingly similar to that found in the Hawaiian chain surrounding the Molokai Fracture Zone. In contrast, the ‘refracted plume’ hypothesis predicts more chaotic patterns quite different from the off‐chain pattern of Hawaiian volcanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.