Abstract

While the relationship between the Arctic sea ice loss and midlatitude winter climate has been well discussed, especially on the seasonal mean scale, it remains unclear whether the Arctic sea ice condition affects the predictability of North American cold weather on the subseasonal time scale. Here we find that, in the presence of low Barents-Kara Sea (BKS) sea ice, sudden stratospheric warmings (SSWs) can favor surface cold spells over North America at the subseasonal timescale based on observations and model experiments. A persistent ridge of wave-2 pattern emerges over the Bering Sea-Gulf of Alaska several weeks after the SSW onset, with a coherent structure from the stratosphere to the surface, which, in turn, is conducive to synoptic cold air outbreaks in Canada and midwestern USA. This highlights a planetary wave pathway relating to BKS sea ice changes, by which the stratospheric polar vortex impacts the regional surface temperature on the subseasonal scale. In contrast, this mechanism does not occur with positive BKS sea ice anomaly. These findings help to improve the subseasonal predictability over North America, especially under the background of rapid change of Arctic sea ice in a warming world.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.