Abstract
Abstract The Midcontinent Rift of North America is a ca. 1.1 Ga, 3000-km-long failed rift that nearly split the Precambrian continent of Laurentia. Unlike most continental rifts, which are filled with a mixture of volcanic rocks and sediments, the Midcontinent Rift contains a large volume of flood basalts that were emplaced during both syn- and post-rift stages. Consequently, the Midcontinent Rift, which comprises the Keweenaw large igneous province, is the most significant positive anomaly on gravity maps of central North America. We investigated the mantle conditions required to produce this large volume of flood basalt and the observed two main stages of emplacement. To explore whether these magma volumes required a plume or, instead, could have resulted from the increased ambient mantle temperatures expected for the Neoproterozoic, we used a geodynamic model for a range of ambient mantle and plume temperatures under different scenarios of lithospheric extension. The most favorable scenario for the generation of both syn-rift and post-rift lavas combines a plume with excess temperatures between 175 and 225 °C introduced during the syn-rift phase and ambient mantle potential temperatures between 1393 and 1443 °C, with an initial lithospheric thickness not exceeding 150 km for 3 mm/yr extension rates.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.