Abstract

The presence of norovirus (NoV) genogroup I (GI) and II (GII) was evaluated using real-time reverse transcription polymerase chain reaction (rRT-PCR) in the influent, two midtreatment locations, and final effluent of a three-pond serial waste stabilization pond system from December 2005 through June 2006. Additionally, influent and effluent samples were filtered through a cascade of three membrane filters with sequentially smaller pores to determine the size range of particles with which GI and GII were associated. NoV GI and GII removal occurs primarily in the third pond. Viruses were found on large settleable particles (retained on a 180 microm filter), on smaller suspended particles (retained on a 0.45 microm filter), on colloidal particles (retained on a positively charged 0.45 microm filter), and in the final filtrate. Both GI and GII in influent samples were found to be dominantly associated with particles smaller than 180 microm, thereby suggesting that particle settling is not the main virus removal mechanism in the waste stabilization pond system. On average, NoV detected in filtered effluent samples were associated with particles between 0.45 and 180 microm in diameter (47 and 67% of detected GI and GII, respectively). The presence of NoV GI and GII in the final filtrate of influent and effluent samples shows that positively charged membrane filters often used for viral concentration methods are not capable of trapping all viruses present in wastewater samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.