Abstract

ABSTRACTFrom a normed quadratic space (V,q), we construct a norm on the Clifford algebra C(V,q). We describe the associated graded form of this norm and give a condition for this norm to be a gauge. Then, we apply our results to prove that for a complete discrete valued field, an anisotropic quadratic form q with dimq = 0 mod 8 and nonsplit Clifford algebra cannot be at the same time a transfer of a K-hermitian form with K∕F an inertial quadratic field extension and a transfer of a T-hermitian form with T∕F a ramified quadratic field extension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.