Abstract

Heart transplantation (HTx) is, at present, the most effective therapy for end-stage heart failure patients; however, the number of patients on the waiting list is rising globally, further increasing the gap between demand and supply of donors for HTx. First studies using the Organ Care System (OCS) for normothermic machine perfusion show promising results yet are limited in sample size. This article presents a meta-analysis of heart donation either after brain death (OCS-DBD) or circulatory death (OCS-DCD) on using OCS versus static cold storage used for HTx. A systematic literature search was performed for articles discussing the use of normothermic ex situ heart perfusion in adult patients. Thirty-day survival outcomes were pooled, and odds ratios were calculated using random-effects models. Long-term survival was visualized with Kaplan-Meier curves, hazard ratios were calculated and pooled using fixed-effects models, and secondary outcomes were analyzed. A total of 12 studies were included, with 741 patients undergoing HTx, of which 260 with the OCS (173 DBD and 87 DCD). No differences were found between the 3 groups for early and late survival outcomes or for secondary outcomes. OCS outcomes, for both DBD and DCD hearts, appeared similar as for static cold storage. Therefore, OCS is a safe and effective technique to enlarge the cardiac donor pool in both DBD and DCD, with additional benefits for long-distance transport and surgically complex procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.