Abstract

Saline administration may change renin-angiotensin-aldosterone system (RAAS) activity and sodium excretion at constant mean arterial pressure (MAP). We hypothesized that such responses are elicited mainly by renal sympathetic nerve activity by beta1-receptors (beta1-RSNA), and tested the hypothesis by studying RAAS and renal excretion during slow saline loading at constant plasma sodium concentration (Na+ loading; 12 micromol Na+.kg(-1).min(-1) for 4 h). Normal subjects were studied on low-sodium intake with and without beta1-adrenergic blockade by metoprolol. Metoprolol per se reduced RAAS activity as expected. Na+ loading decreased plasma renin concentration (PRC) by one-third, plasma ANG II by one-half, and plasma aldosterone by two-thirds (all P < 0.05); surprisingly, these changes were found without, as well as during, acute metoprolol administration. Concomitantly, sodium excretion increased indistinguishably with and without metoprolol (16 +/- 2 to 71 +/- 14 micromol/min; 13 +/- 2 to 55 +/- 13 micromol/min, respectively). Na+ loading did not increase plasma atrial natriuretic peptide, glomerular filtration rate (GFR by 51Cr-EDTA), MAP, or cardiac output (CO by impedance cardiography), but increased central venous pressure (CVP) by approximately 2.0 mmHg (P < 0.05). During Na+ loading, sodium excretion increased with CVP at an average slope of 7 micromol.min(-1).mmHg(-1). Concomitantly, plasma vasopressin decreased by 30-40% (P < 0.05). In conclusion, beta1-adrenoceptor blockade affects neither the acute saline-mediated deactivation of RAAS nor the associated natriuretic response, and the RAAS response to modest saline loading seems independent of changes in MAP, CO, GFR, beta1-mediated effects of norepinephrine, and ANP. Unexpectedly, the results do not allow assessment of the relative importance of RAAS-dependent and -independent regulation of renal sodium excretion. The results are compatible with the notion that at constant arterial pressure, a volume receptor elicited reduction in RSNA via receptors other than beta1-adrenoceptors, decreases renal tubular sodium reabsorption proximal to the macula densa leading to increased NaCl concentration at the macula densa, and subsequent inhibition of renin secretion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call