Abstract
Current research on metabolic disorders and diabetes relies on animal models because multi-organ diseases cannot be well studied with standard in vitro assays. Here, we have connected cell models of key metabolic organs, the pancreas and liver, on a microfluidic chip to enable diabetes research in a human-based in vitro system. Aided by mechanistic mathematical modeling, we demonstrate that hyperglycemia and high cortisone concentration induce glucose dysregulation in the pancreas-liver microphysiological system (MPS), mimicking a diabetic phenotype seen in patients with glucocorticoid-induced diabetes. In this diseased condition, the pancreas-liver MPS displays beta-cell dysfunction, steatosis, elevated ketone-body secretion, increased glycogen storage, and upregulated gluconeogenic gene expression. Conversely, a physiological culture condition maintains glucose tolerance and beta-cell function. This method was reproducible in two laboratories and was effective in multiple pancreatic islet donors. The model also provides a platform to identify new therapeutic proteins, as demonstrated with a combined transcriptome and proteome analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.