Abstract

BackgroundQuantifying stiffness of the lumbar spine musculature using shear-wave elastography (SWE) maybe beneficial in the diagnosis and treatment of non-specific low back pain (LBP). The primary purpose of this study was to establish normative parameter and variance estimates of lumbar spine muscle stiffness at rest and during submaximal contraction levels using SWE in healthy individuals. A second aim was to determine the relationship between lumbar spine muscle stiffness and a variety of demographic, anthropometric, and medical history variables. MethodsThis cross-sectional study included stiffness measurements of the lumbar musculature in 120 asymptomatic individuals using ultrasound SWE. The lumbar erector spinae muscle was measured during rest only and lumbar multifidus muscle was measured during rest and during submaximal contraction using a prone contralateral arm lift. Statistical comparisons of shear modulus were made between sex (male vs. female) and muscle condition (erector spinae rest, lumbar multifidus rest, lumbar multifidus contracted) using 2 × 3 repeated measures analysis of variance (ANOVA). Univariate associations between shear modulus and age, sex, BMI, activity level, and history of back pain were assessed using correlation analysis. FindingsShear modulus at rest was approximately 4 kPa for the erector spinae muscles and approximately 6 kPa for the lumbar multifidus muscles. Shear modulus substantially increased during contraction, and varied by sex, BMI, and self-reported activity level, with men and more active individuals generally having stiffer muscles. InterpretationVariability in shear modulus of the lumbar musculature may be mediated through a combination of muscle size and contractile state, which is consistent with our findings of higher stiffness in the more postural lumbar multifidi muscles, during contraction, and in larger and more active individuals. These findings should inform and be accounted for in future comparative clinical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.