Abstract
PurposeThe study was designed to assess the co-contractions of tibialis anterior (TA) and gastrocnemius lateralis (GL) in healthy school-age children during gait at self-selected speed and cadence, in terms of variability of onset-offset muscular activation and occurrence frequency. MethodsStatistical gait analysis, a recent methodology performing a statistical characterization of gait by averaging spatio-temporal and sEMG-based parameters over numerous strides, was performed in 100 healthy children, aged 6-11 years. Co-contractions were assessed as the period of overlap between activation intervals of TA and GL. ResultsOn average, 165±27 strides were analyzed for each child, resulting in approximately 16,500 strides. Results showed that GL and TA act as pure agonist/antagonists for ankle plantar/dorsiflexion (no co-contractions) in only 19.2±10.4% of strides. In the remaining strides, statistically significant (p<0.05) co-contractions appear in early stance (46.5±23.0% of the strides), mid-stance (28.8±15.9%), pre-swing (15.2±9.2%), and swing (73.2±22.6%). This significantly increased complexity in muscle recruitment strategy beyond the activation as pure ankle plantar/dorsiflexors, suggests that in healthy children co-contractions are likely functional to further physiological tasks as balance improvement and control of joint stability. ConclusionsThis study represents the first attempt for the development in healthy children of a normative dataset for GL/TA co-contractions during gait, achieved on an exceptionally large number of strides in every child and in total. The present reference frame could be useful for discriminating physiological and pathological behavior in children and for designing more focused studies on the maturation of gait.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.