Abstract
AbstractThe Turing degrees of infinite levels of the Ershov hierarchy were studied by Liu and Peng [8]. In this paper, we continue the study of Turing degrees of infinite levels and lift the study of density property to the levels beyond ω2. In doing so, we rely on notations with some nice properties. We introduce the concept of normalizing notations and generate normalizing notations for higher levels. The generalizations of the weak density theorem and the nondensity theorem are proved for higher levels in the Ershov hierarchy. Furthermore, we also investigate the minimal degrees in the infinite levels of the Ershov hierarchy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.