Abstract

Summary Considering reciprocity where the traveltime is an even function of the offset or horizontal-slowness, the fourth-order normal moveout (NMO) series are governed by the normal-incidence time and eight effective parameters: three second-order and five fourth-order. Local effective parameters are related to the individual layers, while the global effective parameters are related to the overburden multi-layer model. Local and global parameters are related by forward and inverse Dix-type transforms. The NMO formulae are different in the slowness and offset domains, but the eight parameters are the same in both cases. We suggest a new set of intuitive normalized effective parameters, classified into two “azimuthally isotropic” and six “azimuthally anisotropic” parameters. We provide feasible ranges for the normalized parameters, thus allowing their used for controlled inversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.