Abstract

In this paper, we investigate the behavior of the normalized Ricci flow on asymptotically hyperbolic manifolds. We show that the normalized Ricci flow exists globally and converges to an Einstein metric when starting from a non-degenerate and sufficiently Ricci pinched metric. More importantly we use maximum principles to establish the regularity of conformal compactness along the normalized Ricci flow including that of the limit metric at time infinity. Therefore we are able to recover the existence results in Graham and Lee (Adv Math 87:186–255, 1991), Lee (Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds, 2006), and Biquard (Surveys in Differential Geometry: Essays on Einstein Manifolds, 1999) of conformally compact Einstein metrics with conformal infinities which are perturbations of that of given non-degenerate conformally compact Einstein metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.