Abstract

In this letter, we give a simple proof of the fact that the determinant of Laplace operator in a smooth metric over compact Riemann surfaces of an arbitrary genus g monotonously grows under the normalized Ricci flow. Together with results of Hamilton that under the action of the normalized Ricci flow a smooth metric tends asymptotically to the metric of constant curvature, this leads to a simple proof of the Osgood–Phillips–Sarnak theorem stating that within the class of smooth metrics with fixed conformal class and fixed volume the determinant of the Laplace operator is maximal on the metric of constant curvatute.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.