Abstract

AbstractReal‐time hybrid testing involves the separation of a system into an experimental component and a numerically simulated substructure which are coupled and run together. The coupling between substructures is achieved using actuators and force sensors which comprise the transfer system. Close synchronization is required between substructures for reliable hybrid testing. However, actuator lag may cause tracking errors and instability in hybrid tests. Existing lag compensation schemes require identification of the coupled dynamics of the transfer system and experimental component and can be sensitive to changes in these components. Passivity control is a technique intended to maintain stability without the need for system identification or assumptions about the actuators or test specimens. Yet, the tuning of existing passivity controllers is sensitive to both the system being tested and the amplitude and frequency range excited. This paper presents a new, normalized passivity controller which behaves well across a much broader range of operating conditions once tuned for a single‐test scenario. The proposed approach uses a virtual damping element on the numerical substructure to dissipate spurious power injected by the actuator into the system, based on the ratio of net power output to mean power throughput. The scheme has been shown to result in identical performance for a linear hybrid test with a range of step excitations from 0.5 mm up to 500 mm. The proposed method can be used to improve test stability and fidelity in isolation or alongside other compensation schemes to further improve performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.