Abstract

Recently developed algorithms for least-squares identification of autoregressive models are extended in this paper so as to facilitate least-squares identification of finite impulse-response models. The algorithms belong to the class of square-root normalized lattice algorithms, hence they share the computational efficiency and good numerical behavior of the latter. Two versions are presented-one for identifying time-invariant models and the other for tracking time-varying parameters. New lattice-form realizations of the identified FIR models are given. The general framework is then specialized to the important cases of prediction and smoothing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.