Abstract

In this paper, we study relationships between the normalized characters of symmetric groups and the Boolean cumulants of Young diagrams. Specifically, we show that each normalized character is a polynomial of twisted Boolean cumulants with coefficients being non-negative integers, and conversely, that, when we expand a Boolean cumulant in terms of normalized characters, the coefficients are again non-negative integers. The main tool is Khovanov's Heisenberg category and the recently established connection of its center to the ring of functions on Young diagrams, which enables one to apply graphical manipulations to the computation of functions on Young diagrams. Therefore, this paper is an attempt to deepen the connection between the asymptotic representation theory and graphical categorification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.