Abstract
A myo-inositol-related defect in nerve Na(+)-K(+)-ATPase in experimental diabetes has been invoked in the pathogenesis of diabetic neuropathy, but the mechanism linking altered myo-inositol metabolism and Na(+)-K(+)-ATPase regulation in diabetic nerve is uncertain. Decreased Na(+)-K(+)-ATPase in diabetic rat nerve is normalized by aldose reductase inhibitors or dietary myo-inositol, which preserve normal nerve myo-inositol content in vivo. Decreased Na(+)-K(+)-ATPase in diabetic rabbit nerve is acutely reversed by exposure to protein kinase C agonists in vitro. This study explored the relationship between the myo-inositol-sensitive and protein kinase C-agonist-sensitive Na(+)-K(+)-ATPase defects in diabetic rat nerve. Ouabain-sensitive ATPase activity was measured in an enriched membrane fraction isolated from nondiabetic, streptozocin-induced diabetic, and myo-inositol-supplemented streptozocin-induced diabetic rats before and after the membranes were exposed to protein kinase C agonists in vitro. The decreased ouabain-sensitive ATPase activity in plasma membranes from untreated diabetic rats was increased after exposure to two structurally unrelated protein kinase C agonists; the normal ouabain-sensitive ATPase in plasma membranes from myo-inositol-supplemented diabetic rats was unaffected by protein kinase C agonists. The nonadditivity and implied equivalence of the Na(+)-K(+)-ATPase defect corrected by myo-inositol in vivo and by protein kinase C agonists in vitro are consistent with the postulated existence of a deficient myo-inositol-dependent phospholipid-derived protein kinase C agonist (presumably diacylglycerol) in diabetic nerve that regulates nerve Na(+)-K(+)-ATPase either directly or via a protein kinase C mechanism.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.