Abstract

In this note we investigate the normality of closures of orthogonal and symplectic nilpotent orbits in positive characteristic. We prove that the closure of such a nilpotent orbit is normal provided that neither type d nor type e minimal irreducible degeneration occurs in the closure, and conversely if the closure is normal, then any type e minimal irreducible degeneration does not occur in it. Here, the minimal irreducible degenerations of a nilpotent orbit are introduced by W. Hesselink in [7] (or see [11] from which we take Table 1 for the complete list of all minimal irreducible degenerations). Our result is a weak version in positive characteristic of [11, Theorem 16.2(ii)], one of the main results of [11] over complex numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.