Abstract

Strong local minimizers with surfaces of gradient discontinuity appear in variational problems when the energy density function is not rank-one convex. In this paper we show that the stability of such surfaces is related to the stability outside the surface via a single jump relation that can be regarded as an interchange stability condition. Although this relation appears in the setting of equilibrium elasticity theory, it is remarkably similar to the well-known normality condition that plays a central role in classical plasticity theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.