Abstract
A perturbation methodology and power series are utilizedto the analysis of nonlinear normal vibration modes in broadclasses of finite-dimensional self-excited nonlinear systems closeto conservative systems taking into account similar nonlinear normal modes.The analytical construction is presented for some concretesystems. Namely, two linearly connected Van der Pol oscillatorswith nonlinear elastic characteristics and a simplesttwo-degrees-of-freedom nonlinear model of plate vibrations in agas flow are considered.Periodical quasinormal solutions of integro-differentialequations corresponding to viscoelastic mechanical systems areconstructed using a convergent iteration process. One assumesthat conservative systems appropriate for the dominant elasticinteractions admit similar nonlinear normal modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.