Abstract

The El Abra porphyry copper deposit belongs to the Late Eocene—Early Oligocene metallogenic belt of northern Chile, which host several world-class porphyry copper deposits. Our previous geochronological work done on this deposit provides the temporal framework for petrological data interpretation. The magmatic history of the El Abra deposit lasts for ~8.6 Ma and can be divided into two stages. An early period, from about 45 to ~38.7 Ma, dominated by diorites and quartz monzodiorites with “normal” (non-adakite) arc geochemistry and a late period, with rocks younger than ~38.7 Ma that developed adakite-like geochemistry, where equigranular granodiorites are the volumetrically dominant rock type (e.g., Clara granodiorite ~38 Ma). These granodiorites are then intruded by leucocratic porphyry dikes and aplites. Most copper mineralization is associated with multiple intrusions of these younger porphyritic rocks, described as the El Abra porphyry unit, and emplaced over a ~1.4 Ma period, from ~37.5 to 36.1 Ma. The adakite-like geochemistry of the younger rock units (<38.7 Ma) is attested by a significant depletion in REE contents, particularly MREE and HREE (concave MREE distribution patterns), high La/Yb and Sr/Y ratios, and Na2O and Al2O3 contents, along with the absence of the Eu anomaly in normalized REE distribution patterns. The evolution of this large, long-lived magmatic system from “normal” to adakite-like arc magmatism is discussed in a tectonic context of crust overthickening due to a major orogenic episode (Incaic compressive phase). This tectonic setting may have promoted higher pressure conditions at the lower crust “hot zone” and increased the crustal residence time of derivative melts favoring extensive differentiation leading to water-rich (and oxidized?) felsic melts, where amphibole fractionation played an important role. Strontium, Nd, and Pb isotope data suggest a common mantle source for both the non-adakite and adakite-like rocks. This implies that these two groups of rocks from the El Abra porphyry copper deposit may have largely resulted from the different crustal conditions under which they have evolved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.