Abstract

AbstractMost non-linear fluids for which the appropriate measurements have been made exhibit non-zero and unequal normal stress differences in shearing flows. Power-law models such as Glen’s law cannot represent this phenomenon. The simplest constitutive equation that does embody normal stress effects defines the second-order fluid. An exact analytical solution for biaxial creep of such a fluid is fit to data from four tests on polycrystalline ice. The model gives an excellent representation of both primary and secondary creep. The fits provide values for the three material constants. These coefficients indicate positive first and second normal stress differences. One consequence is the prediction that a steady open-channel flow will exhibit a longitudinal free-surface depression of up to several meters for sufficiently thick ice on steep slopes. In addition, the compressive principal stress at the channel margin is decreased and the tensile principal stress is increased in magnitude over those predicted by models without normal stresses. The normal stresses thus favor the formation of crevasses. Furthermore, the angle these crevasses form with the channel margin is decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.