Abstract

Hydrogels of semiflexible biopolymers such as collagen have been shown to contract axially under shear strain, in contrast to the axial dilation observed for most elastic materials. Recent work has shown that this behavior can be understood in terms of the porous, two-component nature and consequent time-dependent compressibility of hydrogels. The apparent normal stress measured by a torsional rheometer reflects only the tensile contribution of the axial component σzz on long (compressible) timescales, crossing over to the first normal stress difference, N1 = σxx - σzz at short (incompressible) times. While the behavior of N1 is well understood for isotropic viscoelastic materials undergoing affine shear deformation, biopolymer networks are often anisotropic and deform nonaffinely. Here, we numerically study the normal stresses that arise under shear in subisostatic, athermal semiflexible polymer networks. We show that such systems exhibit strong deviations from affine behavior and that these anomalies are controlled by a rigidity transition as a function of strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.