Abstract

Bolted joints have a significant effect on the dynamical behaviour of assembled structures. Accurate contact stiffness model of bolted joint is crucial in predicting the dynamic performance of bolted structures. In this research, a modified three-dimensional fractal model of normal contact stiffness is presented to more accurately predict the dynamic characteristic of a bolted assembly. In the present model, while the contact deformation exceed the critical value the elastic-plastic contact is used to take the place of Hertz elastic contact in the traditional M-B model, and revise the drawback that elastic-plastic contact occurs before elastic contact in existing elastic-plastic fractal models. As the increase of contact force, the plastic deformation of single asperity is considered again, which is omitted in the two type fractal models. An experimental set-up with two T-shaped specimen is designed conducted to verify the efficiency of the proposed model. Comparing with the ZX elastic-plastic fractal model, the present model can predict contact stiffness and dynamic performance more accurately, particularly, while for higher contact loads. The results show that the modified elastic-plastic fractal contact model can be used to more accurately predict the stiffness and dynamic characteristic of bolted structures in the machine tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.