Abstract

The hypermutation cascade in Ig V genes can be initiated by deamination of cytosine in DNA to uracil by activation-induced cytosine deaminase and its removal by uracil-DNA glycosylase. To determine whether damage to guanine also contributes to hypermutation, we examined the glycosylase that removes oxidized guanine from DNA, 8-hydroxyguanine-DNA glycosylase (OGG1). OGG1 has been reported to be overexpressed in human B cells from germinal centers, where mutation occurs, and could be involved in initiating Ab diversity by removing modified guanines. In this study, mice deficient in Ogg1 were immunized, and V genes from the H and kappa L chain loci were sequenced. Both the frequency of mutation and the spectra of nucleotide substitutions were similar in ogg1(-/-) and Ogg1(+/+) clones. More importantly, there was no significant increase in G:C to T:A transversions in the ogg1(-/-) clones, which would be expected if 8-hydroxyguanine remained in the DNA. Furthermore, Ogg1 was not up-regulated in murine B cells from germinal centers. These findings show that hypermutation is unaffected in the absence of Ogg1 activity and indicate that 8-hydroxyguanine lesions most likely do not cause V gene mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.