Abstract

An analytical model on the normal perforation of reinforced concrete slabs is constructed in the present paper. The effect of reinforcing bars is further hybridized in a general three-stage model consisting of initial crater, tunnelling and shear plugging. Besides three dimensionless numbers, i.e., the impact function I, the geometry function of projectile N and the dimensionless thickness of concrete target χ, which are employed to predict the ballistic performance of perforation of concrete slabs, the reinforcement ratio ρ s of concrete (or area density) and the tensile strength f s of reinforcing bars are considered as the other main factors influencing the perforation process. Simpler solutions of ballistic performances of normal perforation of reinforced concrete slabs are formulated in the present paper. Theoretical predictions agree well with individual published experimental data and have a higher degree of accuracy than the model suggested by Dancygier [Effect of reinforcement ratio on the resistance of reinforced concrete to hard projectile impact. Nucl Eng Des 1997;172:233–45].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call