Abstract

AbstractWe present an algorithm which, for given n, generates an unambiguous regular tree grammar defining the set of combinatory logic terms, over the set {S, K} of primitive combinators, requiring exactly n normal-order reduction steps to normalize. As a consequence of Curry and Feys's standardization theorem, our reduction grammars form a complete syntactic characterization of normalizing combinatory logic terms. Using them, we provide a recursive method of constructing ordinary generating functions counting the number of SK-combinators reducing in n normal-order reduction steps. Finally, we investigate the size of generated grammars giving a primitive recursive upper bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.