Abstract
Assuming the continuum hypothesis, a normal nonmetrizable Moore space is constructed. This answers a question raised by F. B. Jones in 1931, using an axiom well known at that time. For the construction, a consequence of the continuum hypothesis that also follows from the nonexistence of an inner model with a measurable cardinal is used. Hence, it is shown that to prove the consistency of the statement that all normal Moore spaces are metrizable one must assume the consistency of the statement that measurable cardinals exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.