Abstract

Needle electromyographic insertional activity waveform morphology, and mechanisms of generation, have received little attention. This study analyzes the individual component waveforms that contribute to the burst of electrical activity known as insertional activity. One hundred monopolar needle insertions were slowly performed and high speed recorded to allow better separation of the contributing individual component waveforms. Analysis of the many waveforms recorded demonstrates several classes of potentials. All of these could be reconstructed by the summation of two basic or elementary waveform patterns: a biphasic initially negative spike with or without a "prepotential" similar to an end-plate spike, and the biphasic initially positive spike with a slowly declining negative phase, similar to a positive sharp wave, though shorter in duration. The relationship between these elementary waveforms and their hypothesized generator sources is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.