Abstract

Summary A uniformly valid linear viscoelastic rheology is described which takes the form of a ‘generalized’ Burgers' body and which appears capable of reconciling the behaviour of the Earth's mantle across the complete spectrum of geodynamic time-scales. This spectrum is bracketed by the short time-scales of body wave and free oscillation seismology on which anelastic effects are dominant, and the long time-scale of mantle convection on which the Earth behaves viscously. The parameters of the model which control the viscous response are fixed by post-glacial rebound data whereas those which govern the anelasticity are to be determined by fitting the model to observations of seismic Q. The paper is concerned primarily with a discussion of the normal mode spectrum of the Earth as a generalized Burgers' body. Focusing upon the homogeneous model, it includes an initial analysis of the accuracy of first-order perturbation theory as a method of calculating the respective Qs of the elastic gravitational free oscillations. Also considered are the quasi-static modes of relaxation which only exact eigenanalysis can reveal. The importance of these modes is assessed within the context of a discussion of the effect of viscoelasticity upon the efficiency of Chandler wobble excitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call