Abstract

Although spin cycloids and helices are quite common, remarkably little is known about the normal modes of a spin cycloid or helix with finite length on a discrete lattice. Based on simple one-dimensional lattice models, we numerically evaluate the normal modes of a spin cycloid or helix produced by either Dzyaloshinskii-Moriya (DM) or competing exchange (CE) interactions. The normal modes depend on the type of interaction and on whether the nearest-neighbor exchange is antiferromagnetic (AF) or ferromagnetic (FM). In the AF/DM and FM/DM cases, there is only a single Goldstone mode; in the AF/CE and FM/CE cases, there are three. For FM exchange, the spin oscillations produced by non-Goldstone modes contain a mixture of tangential and transverse components. For the DM cases, we compare our numerical results with analytic results in the continuum limit. Examples are given of materials that fall into all four cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call