Abstract
The spatially-inhomogeneous magnetization dynamics in a cylindrical magnetic nanodot driven by ac spin-torque is analyzed. To this end, the Landau-Lifshitz-Gilbert-Slonczewski equation is reformulated as a system of coupled nonlinear ordinary differential equations which describe the time-evolution of normal modes amplitudes. This approach provides a class of models with reduced number of degrees of freedom and incremental accuracy between macrospin and full micromagnetics. By using this approach, the onset of foldover effect for fundamental and higher-order modes is demonstrated. The results are confirmed by full micromagnetic simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.