Abstract

A quantitative theory for modeling the laser-generated transient ultrasonic Lamb waves, which propagates along arbitrary directions in orthotropic plates, is presented by employing an expansion method of generalized Lamb wave modes. The displacement field is expressed by a summation of the symmetric and antisymmetric modes in the surface stress-free orthotropic plate, and therefore the theory is particularly appropriate for waveform analyses of Lamb waves in thin plates because one needs only to evaluate several lower modes. The transient waveforms excited by the thermoelastic expansion and the oil-coating evaporation are analyzed for a transversely isotropic thin plate. The results show that the theory provides a quantitative analysis to characterize anisotropic elastic stiffness properties of orthotropic plates by laser-generated Lamb wave detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call