Abstract

Polytheonamide B is a linear 48-residue peptide which forms a single β-helix structure with alternating D- and L-amino acids and contains methylated and hydroxy variants of proteinogenic amino acids. To investigate the dynamical properties of polytheonamide B we perform the normal mode analysis. Root-mean-square displacements of all backbone atoms, root-mean-square fluctuations of the backbone dihedral angles (Φ, ψ), and correlation factors for the C α atom fluctuations and for the dihedral angle fluctuations are calculated. The normal mode analysis reveals that polytheonamide B shows the elastic rod behavior in the very low-frequency regions and that librational motions of backbone amide planes have the modes with relatively low frequencies, which is relevant to the function of polytheonamide B. In addition, these librational motions occur almost independently and weakly anticorrelate with those of the hydrogen-bonded neighboring amide planes. Calculations of the backbone fluctuations show that the flexibility of polytheonamide B is roughly uniform over the entire helix. We compare our results with those of gramicidin A, the analogue of polytheonamide B, to discuss the structures and functions, and obtain some common features in the flexibilities and dynamics of the backbone atoms. These results present important clues for clarifying the function of polytheonamide B at the atomic level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.