Abstract

The number of degrees of freedom (DOF), N, in normal mode analysis (NMA) calculations of proteins is a crucial problem in huge systems because the eigenvalue problem of an N-by-N matrix must be solved. If it were possible to perform the analysis with a smaller number of DOF for the same system with minimal deterioration in accuracy, this would make a significant impact on the computational study of protein dynamics. We examined two models in which the number of DOF was reduced. Both of them adopted a full-atom model with dihedral angles as independent variables. In one model, side-chain dihedral angles, χ’s, and a main-chain dihedral angle, ω, were fixed and only the main-chain dihedral angles, ϕ and ψ, were variable. In another model, the dihedral angles around virtual bonds that connect neighboring Cα atoms were tested. The number of DOFs for the two models was two and one per residue, respectively. The residue-by-residue fluctuation profiles for atoms and dihedral angles were well reproduced in both models. The motion of atoms in the individual lowest-frequency normal modes of the two models was also very similar to those of the original model in which all rotatable dihedral angles were variable. Consequently, these models could predict large-amplitude concerted motion. These results also imply that proteins in a full-atom model can undergo only limited large-scale conformational changes around the native conformation, and consequently, NMA results do not strongly depend on the independent variables adopted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.