Abstract

Rett syndrome (RTT) is an autism spectrum disorder caused by mutation in the gene encoding methyl CpG binding protein 2 (MECP2). Evidence to date suggests that these disorders display defects in synaptic organization and plasticity. A hallmark of the pathology in RTT has been identified as decreased dendritic arborization, which has been interpreted to represent abnormal dendritic formation and pruning during development. Our previous studies revealed that olfactory axons display defective pathfinding and targeting in the setting of Mecp2 mutation. In the present work, we use Mecp2 mutant mouse models and the olfactory system to investigate dendritic development. Here, we demonstrate that mitral cell dendritic development proceeds normally in mutant mice, resulting in typical dendritic morphology at early postnatal ages. We also failed to detect abnormalities in dendritic inputs at symptomatic stages when glomeruli from mutant mice appear smaller in area than the wild type (WT) (6 weeks postnatally). Collectively, these findings suggest that the initial defects in glomeruli impairment seen with Mecp2 mutation do not result from abnormal dendritic development. Our results using the olfactory system indicate that dendritic abnormalities are not an early feature in the abnormalities incurred by Mecp2 mutation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.