Abstract

The space of normal measures on a measurable cardinal is naturally ordered by the Mitchell ordering. In the first part of this paper we show that the Mitchell ordering can be linear on a strong cardinal where the Generalised Continuum Hypothesis fails. In the second part we show that a supercompact cardinal at which the Generalised Continuum Hypothesis fails may carry a very large number of normal measures of Mitchell order zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.