Abstract

For the determination of the transmission loss of samples in an impedance tube, two different approaches is found in the literature, one based on determining the full transfer matrix (TM method) of the acoustic element, the other based on the wavefield decomposition theory (WD method). In this paper both methods are implemented and measured results are compared using samples which includes different types of perforated plates, also combined with porous material. Measurements are conducted in a tube of square cross section with dimensions 200 × 200 mm, thereby limiting the workable frequency range upwards to approximately 850 Hz. The main purpose of the paper is, however, to compare measured results with predictions using the transfer matrix method. For a bare plate with cylindrical apertures two models are compared as well; a “classical” one and another based on modeling the perforated plate as a porous material having a rigid frame. As for these transmission loss measurements, the two measurement approaches turn out to give identical results within the numerical accuracy. The fit between measured and predicted results are reasonably good with a maximum deviation mostly within 2 dB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.